
Tetrahedral Projection using Vertex Shaders
Brian Wylie Patricia Crossno

Lee Ann Fisk Kenneth Moreland
Sandia National Laboratories*

Abstract
Projective methods for volume rendering currently represent

the best approach for interactive visualization of unstructured
datasets. We present a technique for tetrahedral projection using
the programmable vertex shaders on current generation
commodity graphics cards. The technique is based on Shirley and
Tuchman’s Projected Tetrahedra (PT) algorithm and allows
tetrahedral elements to be volume scan converted within the
graphics processing unit. Our technique requires no pre-
processing of the data and no additional data structures. Our initial
implementation allows interactive viewing of large unstructured
datasets on a desktop personal computer.
CR Categories and Subject Descriptors: I.3.8 [Computer
Graphics]: Applications; I.3.5 [Computer Graphics]:
Computational Geometry and Object Modeling; I.3.3 [Computer
Graphics: Picture/Image Generation – display algorithms
Additional Keywords: direct volume rendering, PC graphics
hardware, volume scan conversion, projection volume rendering

1 INTRODUCTION
In recent years, the capabilities and performance of personal

computer (PC) graphics cards have grown dramatically. This
growth, driven by the computer gaming and entertainment
industry, has opened up new opportunities to the scientific
visualization community. Although not specifically designed for
scientific visualization, the flexibility of the current generation
cards allows them to be utilized in unique and creative ways.

Specifically, our work focuses on programmable vertex
shaders and their ability to act as Single Instruction Multiple Data
(SIMD) machines on incoming vertices. In particular, we are
working with nVidia’s GeForce family of graphics processors.
We use this programability to create a new hardware-supported,
three-dimensional geometric primitive, the tetrahedron. Existing
primitives are all two-dimensional objects drawn in three-space,
such as lines, triangles, quads, and polygons. We provide a three-
dimensional object that is rendered volumetrically on a
commodity graphics card.

Projective methods for volume rendering of unstructured
grids [7][9] work by projecting, in visibility order, the polyhedral
cells of a mesh onto the image plane, and incrementally
compositing the cell’s color and opacity into the final image.
There are two main orthogonal components in such techniques:
determining a visibility order to be used in projecting the cells
[7][13][1][10], and actually computing the contribution of each
cell to the image [9][7][6].

In this paper, we present a technique for efficiently
computing a cell’s contribution to the image. It is orthogonal to
the algorithm used for depth sorting of the cells. The application
can determine the most suitable sorting algorithm, and once the
cells are sorted, they can be sent to the graphics processing unit
(GPU). This architecture allows the PC’s central processing unit
(CPU) to perform the depth sorting, and the GPU to perform the

PT algorithm on the tetrahedral primitive. In general, splitting up
the work in this fashion allows a more balanced approach to
volume rendering. In specific instances the CPU and GPU can be
pipelined when computing multiple frames. Our segmented
approach also facilitates replacing the visibility sorting algorithm
with newer algorithms as they become available.

2 RELATED WORK
For unstructured grids, the use of projection techniques to

accelerate volume rendering has been an active area of research
for many years. Projection techniques decompose three-
dimensional cells into two-dimensional primitives that can be
processed by graphics hardware. Earlier algorithms were
designed to take advantage of SGI hardware features. Recently,
algorithms have been targeted to run on PC graphics cards. The
goal of this research is to achieve realistic volume rendering of
unstructured data at interactive rates.

In order to achieve this goal, it is necessary to develop
solutions to the two components of projective algorithms,
visibility ordering and cell contribution. Starting with Williams’s
work [13], there has been substantial progress in the development
of accurate visibility ordering algorithms [10][1][2]. In fact, the
SXMPVO algorithm of Cook et al., is able to sort well over one
million cells per second on current hardware.

Class 4Class 3

Class 2

Class 1

Figure 1: Classification of tetrahedral projections.

The Projected Tetrahedra (PT) algorithm by Shirley and
Tuchman [9] demonstrates the potential of using graphics cards to
accelerate volume rendering of unstructured data. The PT
algorithm splits each of the cells in the grid into tetrahedra. The
projected profile of each tetrahedron, with respect to the image
plane, is used to classify it and decompose it into a set of
triangles. The four classes of projections are shown in Figure 1.
The color and opacity values for each triangle vertex are
approximated using ray integration through the thickest point of
the tetrahedron. The resulting semi-transparent triangles are
sorted in depth order, then rendered and composited using
graphics hardware. Stein et al. [11] modify the PT algorithm to
sort the cells before they are split into tetrahedra. Additionally,

--
*

Sandia National Laboratories, Albuquerque NM 87185-0822

E-mail {bnwylie | pjcross | lafisk | kmorel}@sandia.gov

they utilize 2D texture mapping hardware to accelerate opacity
interpolation and provide the correct per pixel opacity values to
avoid artifacts.

Röttger et al. [8] extend the PT algorithm by correcting the
artifacts introduced by the linear interpolation of color and opacity
between vertices. They create a three-dimensional texture map to
provide hardware support in interpolating along the ray between
the front and back faces of a tetrahedral cell. In this texture map,
two of the three coordinates correspond to values at the cell entry
and exit points, with the third coordinate mapping to the distance
through the cell. This texture map is then approximated using
two-dimensional texture mapping.

Engel et al. [1] expand on the work of Röttger et al. using the
programmable features of the GeForce3 graphics card. To avoid
generating additional slices for image quality, they integrate non-
linear transfer functions in a pre-processing step. Pre-integrated
classification is combined with volume rendering techniques for
structured or unstructured cells. However, for this paper, the
rendering techniques implemented are for regular grids.

King et al. [5] propose an architecture for tetrahedral scan
conversion that would do the visibility sorting in the hardware in
addition to the classification, triangulation, and thick vertex
calculation. They describe a new hardware buffer, a recirculating
fragment buffer or R-buffer that would be used to implement
order independent transparency (this is similar to Farias, et al.’s
ZSWEEP[4]). To reduce the bandwidth required to send a
tetrahedral mesh to the GPU, they propose an extension to the
OpenGL API to implement two new primitives, a tetrahedral strip
and a tetrahedral fan, and provide ‘stripification’ algorithms.
However, although these ideas are evaluated through simulation,
the hardware is not built and the OpenGL extensions do not exist.
One of the advantages of both King et al [5] and Farias et al. [4] is
that they handle meshes with visibility cycles, while order-
dependent techniques would generate incorrect images.

3 APPROACH
Programmable vertex shaders do not currently support

dynamic vertex creation or topology modification within the
vertex program. The topology and number of vertices are fixed
and strictly determined by the calling application. Section 3.1
discusses aspects of vertex programming and its effects on
execution flow and branching. All of these constraints make the
implementation of the PT algorithm impossible if one simply
sends the tetrahedral vertices down the graphics pipe. Instead, we
need a fixed topology that can be adapted, strictly through vertex
manipulations, to represent the two-dimensional projection of a
tetrahedron viewed from any angle. We call this fixed topology
the basis graph. The basis graph is the original tetrahedron with
an additional phantom vertex. The graph is isomorphic with the
two-dimensional projection of the tetrahedron onto the viewing
plane, irrespective of viewing angle (see section 3.2). The basis
graph is sent to the graphics hardware where the vertex program
performs all the following steps required by the our algorithm:

1.) Transform to screen space.
2.) Determine projection class.
3.) Calculate the coordinates of the phantom vertex.
4.) Map the vertices to the basis graph.
5.) Determine depth at thick vertex.
6.) Compute color and opacity for thick vertex.
7.) Multiplex the result to correct output vertex.
The implementation of each of these steps, with respect to

the basis graph, is covered in detail in the following sections.

3.1 Coding Constraints
Analogous to issues in programming for SIMD architectures,

writing vertex programs presents a number of constraints over
traditional programming. These include the loss of branching
statements for flow control, independent processing of all vertices
passed to the GPU with no knowledge about neighboring vertices
or connectivity between vertices, and the inability to change
execution based on past information. Implementing the PT
algorithm under these conditions requires a model where all
information about the tetrahedral vertices must be passed in
through the input registers, and the same code is redundantly run
on each vertex.

These constraints favor universal ‘reuse’ over algorithmic
efficiency. Given the four classes of tetrahedral screen
projections shown in Figure 1, clearly not all cases will require
identical processing. For instance, although class 1 projections do
not need to compute an intersection of the tetrahedral line
segments, the lack of flow control leads to performing the
intersection calculation anyway. Consequently, we use this result
for “thickness” calculations, instead of the more familiar ray-
plane intersection test. The emphasis on using the same code for
all cases tends to obfuscate what would otherwise be a fairly
simple algorithm.

3.2 Basis Graph
The inability to create or delete vertices within a vertex

program and the fixed topological constraints of submitted
vertices requires the creation of a basis graph. The basis graph
must be able to ‘morph’ itself into any one of the possible
triangle/topology outcomes from the viewpoint dependant
projection of the tetrahedral cell.

Our basis graph consists of five vertices (four defined by the
tetrahedral cell, plus a phantom vertex) and a topological
specification (see Figure 2). The configuration shown allows us
to create any triangulation used by the projections shown in
Figure 1 simply by generating new coordinate locations for the
five vertices basis graph. These coordinates may be computed
dynamically based on line intersections (class 2) or we may just
swap or copy input vertex locations to accommodate topology or
winding constraints.

V1’
V4’

V0’

V3’

V2’

Figure 2: Our basis graph with five vertices and their
topological specification. Note: the graph illustrates topology
and does not represent geometric locations of the vertices.

In Figure 3, we present a pseudo code example of how the
basis graph is used conceptually. A tetrahedron is simply
defined by coordinate vertices {V0, V1, V2, V3}. For each
tetrahedron we introduce an additional phantom vertex, VP, that is
sent down the graphics pipe along with the four true vertices. The
topology of the basis graph shown in Figure 2 can be drawn with
the GL_TRIANGLE_FAN primitive. In practice, the input
registers for each invocation of the vertex program are loaded
with the properties (coordinates, colors, etc…) of all four

tetrahedral vertices and the specific vertex given to the glVertex
call is ignored because the vertex program uses at all four vertices
in its calculations.

depth sort all tetrahedra

for each tetrahedron {V0, V1, V2, V3}
{

Load {V0, V1, V2, V3} into registers
Begin TRIANGLE_FAN
 Invoke vertex program for V4’
 Invoke vertex program for V0’
 Invoke vertex program for V1’
 Invoke vertex program for V2’
 Invoke vertex program for V3’
 Invoke vertex program for V0’
End

}

Figure 3: Pseudo code for converting tetrahedral cells with
four vertices into the five-vertex basis graph.

Using this approach, the modifications to existing application
software would be minimal. In fact, by just applying a thin
veneer we could support a GL_TETRA_EXT primitive and
details like the phantom vertex could be abstracted away.

3.3 Classification Determination
Shirley and Tuchman [9] classify the projection of a

tetrahedron into four different cases based on the number of
triangles required for drawing the projection silhouette from
various viewing angles. In each case, one of the vertices of the
triangles represents the thickest point in the projection of the
tetrahedron. The other vertices of the triangles represent the
points where the thickness at the edge of the tetrahedron
transitions to zero. The thickness is used in calculating the
brightness and opacity of the cell projection. In Class 2, none of
the four vertices defining the tetrahedron falls at the thickest
point, which is at the intersection of the view vector with the front
and back edges, so this case requires the addition of a vertex.
Class 1 and 2 are the distinct classes with classes 3 and 4
representing degenerate cases (Figure 1).

Given that we pass the vertex data into the GPU before we
know anything about the tetrahedron’s projection onto the screen,
the input order of the vertices to the vertex program is arbitrary.
Therefore, we must deal with every permutation of vertex
ordering in the vertex program. We have developed an expanded
class table, given in Figure 4, that provides all possible
permutations of the relative vertex locations based on input
ordering for class 1 and 2.

The vertex program must differentiate between permutations
to correctly construct the triangle decomposition with respect to
both topology and winding order issues. With permutations there
are 14 cases/projections, not including degenerate cases. Since
vertices cannot be deleted in a vertex program, we simply create
zero area triangles for degenerate cases. The vertex program
classifies the tetrahedron into one of the 14 projection cases by
conducting a series of geometric tests. The setup terms and the
four Boolean tests needed for case determination are listed in
Figure 5. Together with the truth table in Table 1, these identify
the correct mapping between the two isomorphic graphs. Let V =
{V0, V1, V2, V3, VP} be the projected tetrahedron vertices (plus
generated phantom vertex) and V’ = {V0’, V1’, V2’, V3’, V4’} be
the vertices of the basis graph. For each case i of the 14 cases,

there exists a static onto function fi: V → V’ that maps the
projected vertices to the basis graph.

Figure 4: Classifications of projected tetrahedra with
permutations (degenerate classes 3 and 4 are not included).
The vectors and line segment intersections used in the vertex
program are included for illustration.

Figure 5: Definitions and tests used by the vertex program for
classification of projected tetrahedra.

vec1 = V1-V0; vec2 = V2-V0; vec3 = V3-V0;

cross1.z = z component of (vec1 x vec2);
cross2.z = z component of (vec1 x vec3);
cross3.z = z component of (vec2 x vec3);

test1 = (cross1.z * cross2.z < 0);
test2 = (cross1.z * cross3.z > 0);
test3 = (distance V0 to middle vertex – distance V0 to I) > 0;
test4 = (cross1.z > 0);

A description of vertex program operation is given below to
illustrate the process.

Before the vertex program is run, all tetrahedral vertex
properties, {V0, V1, V2, V3}, are loaded into the input
registers in arbitrary order.

First, the vertex program converts vertices from object space
to normalized screen space. The vectors vec1, vec2, and
vec3 are then computed in screen space. The z-components
of the cross products are then computed.

Now we begin an example determination process…

If test1 is true, then the z terms of cross1 and cross2 have
different signs. By using the right hand rule this must mean
that V2 and V3 are on different ‘sides’ of vec1 (i.e. cases 1, 2,
3, 4, 9, or 10). Now, if test2 is true, then cross1.z and
cross3.z have the same sign. So, if V2 is to the right of V1,
then V3 is also to the right of V2. Use the same logic for the
left side. Test2 gives us cases (1, 2, 5, 6, 11, or 12). If both
test1 and test2 are true, that leaves only cases 1 and 2.
These only differ in ‘winding’. All winding ambiguities are
settled using test4.

Our example did not discuss the use of test3. Test3 is used

to distinguish between Class1* and Class2. It simply computes
the Euclidean distance from V0 to the middle vertex† and the
distance from V0 to the intersection point, I. If the distance to the
intersection point is less than the distance to the middle vertex,
than it must be a Class 2 projection. In general, these tests could
take many different forms. These particular tests were chosen
because they require no additional data structures, no
preprocessing, and they can be done in very few vertex program
instructions. The complete logic table for the projection case
determination is given in Table 1.

Case Test 1 Test 2 Test 3 Test 4

1 1 1 X 1
2 1 1 X 0
3 1 0 0 0
4 1 0 0 1
5 0 1 0 0
6 0 1 0 0
7 0 0 0 1
8 0 0 0 0
9 1 0 1 0

10 1 0 1 1
11 0 1 1 1
12 0 1 1 0
13 0 0 1 1
14 0 0 1 0

Table 1: The truth table used by the vertex program for
projection case determination.

* Excluding cases 1 and 2, which have ‘Don’t Care’ logic for

test3.
† The middle vertex is defined as follows: if tests 1 & 2 pass,

it’s V0; if test 1 passes and test 2 fails, its V1; if test 1 fails and test
2 passes, its V2, and if tests 1 & 2 fail its V3.

3.4 Isomorphic Mapping
Now that the vertex program has determined the projection

case, it must handle the topological and winding issues when
mapping the tetrahedral projection onto the basis graph. A
helpful analogy is to think of the vertex program as multiplexing
the input vertices. The program has access to all the vertex
coordinates as input (plus the intersection point, which is
computed internally). From these it selects one to output.

To demonstrate the isomorphic mapping concept, let us
follow the triangle construction for one of our cases. Arbitrarily
we have picked case 5. Recall that the first vertex called within a
GL_TRIANGLE_FAN primitive is the ‘pivot’ vertex. The pivot
vertex is the ‘thick’ vertex around which the rest of the ‘thin’
vertices fan. So for case 5 we know that the proper triangulation
is: V2 as the thick vertex, followed by V0, V1, V3 and back to V0
to complete the fan‡. Figure 6 demonstrates the process our
method uses to convert the tetrahedron into screen space triangles.

Figure 6: An example showing the vertex to node mapping
from a projection instance to the basis graph (shown for a
case 5 projection).

Note that it requires 6 vertex calls to construct a fan of 4
triangles, as shown in Figure 3, and that Class 2 projections
require 4 triangles. We must always make 6 calls because we do
not know a-priori which projection that tetrahedron will make.
Since this particular case is a 3-triangle projection, the call to
generate the last vertex creates a degenerate triangle.

3.5 Computing Thick Vertex Properties
At this point the vertex program has determined the

projection and mapped the tetrahedron onto the basis graph to
form proper triangles. The only remaining task is to compute the
properties of the thick vertex. As discussed in Section 3.1, the
logic behind the thick vertex calculations may be unintuitive
algorithmically, but code reuse dominated our design criteria.

‡ The thin vertices may be called in any order as long as the

proper winding is adhered to.

The first thing we need to do is compute the thickness l of
the thick vertex. In all cases the coordinates of the intersection
point I are computed (see Figure 3). The intersection point is
determined by intersecting the tetrahedral segments as shown in
Figure 3. We compute the thickness, in all cases, by interpolating
along these line segments. Class 2 projections are straightforward;
we compute an interpolated z1 along one segment and compute an
interpolated z2 along the other segment and take the absolute
value of the difference. Class 1 projections build upon the Class 2
result by simply multiplying the result by the ratio of the distance
from V0 to the middle vertex over the distance from V0 to the
intersection point (see pseudo code for details).

For linearly varying cells, the color and extinction coefficient
calculations are carried out in a similar manner; properties from
the vertices are interpolated along the line segments to give the
terms C0, C1 and τ1, τ2. The thick vertex color is then
approximated to be (C0+C1)/2*.

The extinction coefficient ττττ is (τ1+τ2)/2. Once we know ττττ and
the thickness l, we then use the coefficients as lookups into a 2D
texture map defined as 1 – exp(-τl). This technique gives the
correct attenuation of light across a linear varying cell as given in
Stein et al. [11].

We have given the equations for linear varying cells but our
current implementation supports element-centered data only. The
main challenge is getting the vertex program to fit within 128
lines (at the time of writing our program is 125 lines without
linear support). The additional logic to support linear cells is
straightforward but currently takes more than 128 instructions.
The existing vertex program treats the cell as having constant
values for both color C and extinction coefficient ττττ, and uses a
texture map defined as [1- exp(-u)], where u is ττττl, also defined in
Stein [11].

4 RESULTS
Performance measurements were made on a Dell 530 with a

Pentium 4 CPU running at 1.7GHz. The operating system on the
machine is Linux RedHat version 7.1. The graphics card is an
nVidia GeForce 4 from VisionTec. Sandia National Laboratories
has many internal tetrahedral datasets but for comparative
purposes we ran our performance tests on three commonly used
PLOT3D datasets; the blunt fin, the liquid oxygen post and the
delta wing.

Dataset Vertices Tetrahedra
Blunt Fin 40,960 187,395
Oxygen Post 109,744 513,375
Delta Wing 211,680 1,005,675

Table 2: Information about the three datasets tested

Dataset Sorting GPU Total
Blunt Fin .017 sec .25 sec .28 sec
Oxygen Post .05 sec .69 sec .75 sec
Delta Wing .09 sec 1.35 sec 1.45 sec

Table 3: Timings for the various datasets (GPU time includes
loading the input registers, running the vertex program and
conducting a glFinish() before stopping the timer).

* The precise color calculation of the thick vertex when the
color varies linearly across the tetrahedron is beyond the scope of
this paper. Please see Williams and Max [14] for the exact
formula for color in this case. For our implementation we use an
approximate formula given by Shirley and Tuckman [9].

The cell sorting conducted for these experiments is a
standard template library sort on the cell centriods, and is not
guaranteed to be correct. The timing for sorting is simply given
for completeness. For production use we will use one of the
advanced visibility sorting algorithms being developed in that
active research area. The GPU time includes loading the input
registers for each element, running the vertex program for each
element and conducting a glFinish() before stopping the timer.

All cells within the dataset are rendered (we have chosen
transfer functions that assign some opacity to all of the cells). Our
tests were run at many different viewpoints and then averaged
(the difference in timings for any given viewpoint was less than
5%). Datasets like the Blunt Fin were rendered fast enough for the
viewpoint to be interactively manipulated (almost 4 frames/sec).

While the performance is reasonable, we still have room for
improvement. Currently our vertex program is 125 instructions
(out of the possible 128). An extremely long vertex program
slows down the performance. Also most of our work has
concentrated on the implementation of the PT algorithm within
the GPU. At the time of writing, we believe that the biggest
performance drains are the API calls and the data movement
across the AGP bus. At this point we have not investigated
optimization techniques for these issues.

Figure 6: Image generated from the bluntfin dataset (density).

Figure 7: Image generated from the oxygen post dataset (x-
momentum).

5 CONCLUSIONS AND FUTURE WORK
We have presented a method for supporting tetrahedral

primitives directly on the GPU of the current generation graphics
cards. Our algorithm requires no preprocessing and requires no
additional data structures. We believe that techniques like ours
will become increasingly advantageous as GPU’s become faster
and more flexible.

Our work can be extended to provide a hardware accelerated
three-dimensional primitive within OpenGL (GL_TETRA_EXT).
The support would involve issues like handling exponential
textures internally, providing proper API calls, optimizing
memory to GPU performance, and ensuring enough flexibility in
the architecture to handle different use cases. The natural
extension to the tetra primitive is support of tetrahedral strips and
fans (see King et al. [5] for discussion of such primitives).

Currently the algorithm only supports cell-centered data
(constant value across the cell). The major constraint restricting
support of linear cells is the 128-instruction limit for the GPU
vertex program. In the near future we will work on optimizing and
reducing the code to allow for linear cell support.

We also need to fully analyze the degenerate cases where the
tetrahedral points are coincident in space. Our present
implementation uses a linear interpolation function for computing
the thickness of the cell. The interpolation function can break
down under certain degenerate circumstances and, in rare cases,
produce visual artifacts.

Although the performance is reasonably fast we have clearly
not tapped the full potential of the approach. As mentioned in the
results section, we have not concentrated on optimizing API use
and data movement across the AGP. We believe work in that area
will greatly improve our performance.

6 ACKNOWLEDGMENTS
We would like to thank Claudio Silva for his excellent

suggestions and advice. We would also like to thank Milt Clauser
for providing our GeForce 4 card at the last minute. Funding was
partially provided by the Accelerated Strategic Computing
Initiative’s Visual Interactive Environment for Weapons
Simulations (ASCI/VIEWS) program. The DOE Mathematics,
Information, and Computer Science Office also funded part of this
research. The work was performed at Sandia National
Laboratories. Sandia is a multi-program laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the United
States Department of Energy under Contract DE-AC04-
94AL85000.

REFERENCES
[1] Comba, J., Klosowski, J., Max, N., Mitchell, J., Silva, C.,

and Williams, P. “Fast Polyhedral Cell Sorting for
Interactive Rendering of Unstructured Grids,” Computer
Graphics Forum, 19: 467-478, 2000.

[2] Cook, R., Max, N., Silva, C., and Williams, P. “Efficient,
Exact Visibility Ordering of Unstructured Meshes,”
submitted paper.

[3] Engel, K., Kraus, M. and Ertl, T. “High-Quality Pre-
Integrated Volume Rendering Using Hardware-Accelerated
Pixel Shading,” in Proceedings of Eurographics/SIGGRAPH
Graphics Hardware 2001, August 2001.

[4] Farias, R., Mitchell, J., and Silva, C. “ZSWEEP: An
Efficient and Exact Projection Algorithm for Unstructured
Volume Rendering,” in Proceedings of the Volume

Visualization and Graphics Symposium 2000, pp. 91-99,
October 2000.

[5] King, D., Wittenbrink, C., and Wolters, H. “An Architecture
for Interactive Tetrahedral Volume Rendering,” in
Proceedings of the International Workshop on Volume
Graphics, June 2001.

[6] Max, N. “Optical Models for Direct Volume Rendering,”
IEEE Transactions on Visualization and Computer
Graphics, 1(2):99-108, 1995.

[7] Max, N., Hanharan, P., and Crawfis, R. “Area and volume
coherence for efficient visualization of 3d scalar functions”,
Computer Graphics, 24(5):27–33, 1990.

[8] Röttger, S., Kraus, M., and Ertl, T. “Hardware-Accelerated
Volume and Isosurface Rendering Based on Cell-
Projection,” in Proceedings of IEEE Visualization 2000, pp.
109-116, October 2000.

[9] Shirley, P. and Tuchman, A. “A Polygonal Approximation
to Direct Scalar Volume Rendering,” Computer Graphics:
Special issue on San Diego Workshop on Volume
Visualization, 24 (5):63-70, November 1990.

[10] Silva, C., Mitchell, J., and Williams, P. “An Exact Interactive
Time Visibility Ordering Algorithm for Polyhedral Cell
Complexes,” in Proceedings of 1998 Symposium on Volume
Visualization, pp. 87-94, 1998.

[11] Stein, C., Becker, B., and Max, N. “Sorting and Hardware
Assisted Rendering for Volume Visualization,” in
Proceedings of 1994 Symposium on Volume Visualization,
pp. 83-89, October 1994.

[12] Westermann, R. and Ertl, T. “Efficiently Using Graphics
Hardware in Volume Rendering Applications,” in
SIGGRAPH 98 Computer Graphics Proceedings, Annual
Conference Series, pp. 169-177, July 1998.

[13] Williams, P. “Visibility Ordering Meshed Polyhedra,” ACM
Transactions on Graphics, 11(2):103-126, 1992.

[14] Williams, P. and Max N. “A Volume Density Optical Model,
in 1992 ACM Workshop on Volume Visualization, pp. 61-68,
1992.

[15] Williams, P., Max N., and Stein C. “A High Accuracy
Volume Renderer for Unstructured Data”, in IEEE
Transactions on Visualization & Computer Graphics, Vol. 4,
No. 1, March 1999.

COLOR PLATE

Figure 6: An example showing the vertex to node mapping
from a projection instance to the basis graph (shown for a
case 5 projection).

Figure 7: Image generated from the bluntfin dataset (density).

Figure 8: Image generated from the oxygen post dataset (x-
momentum).

	INTRODUCTION
	RELATED WORK
	APPROACH
	Coding Constraints
	Basis Graph
	Classification Determination
	Isomorphic Mapping
	Computing Thick Vertex Properties

	RESULTS
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS

